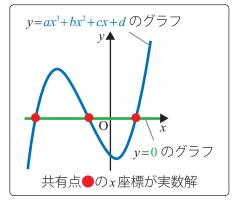
Wisinal Microssy Cliant 数学 II 三角方程式の解の個数問題 早見チャート①

□ 実数解を求める問題とグラフとの関係

方程式 $ax^3+bx^2+cx+d=0$ の実数解を求める問題は, $y=ax^3+bx^2+cx+d$ (左辺の式を y= とした) のグラフと y= 0 (右辺の式を y= とした) (y= 0 はx 軸のこと) のグラフとの共有点のx 座標として捉えることができる。(右図参照)

これは非常に重要な考え方なので絶対に覚える!



□ 定数分離とは?

定数 dを移項した

方程式 $ax^3+bx^2+cx+d=0$ の実数解 \Leftrightarrow 方程式 $ax^3+bx^2+cx=-d$ の実数解 $\Rightarrow y=ax^3+bx^2+cx$ (左辺の式を y= とした)のグラフと y=-d (右辺の式を y= とした)のグラフとの共有点のx 座標として捉える。 このように定数部分を切り離すことを定数分離という。

□ 定数分離の利点は?

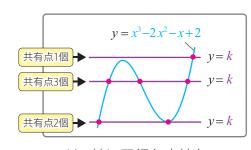
例えば, ■問題 $x^3-2x^2-x+2-k=0$ の実数解の個数を求める場合,

 $y=x^3-2x^2-x+2-k$ (左辺の式を y= とした) と y=0 (右辺の式を y= とした) のグラフとの共有点のx 座標として捉えると, $y=x^3-2x^2-x+2-k$ のグラフは定数 k を含んでいるので,

グラフの概形が掴みにくい。

そこで, $x^3-2x^2-x+2=k$ と定数kを分離(右辺に移項)し,

 $y=x^3-2x^2-x+2$ ……① のグラフと y=k ……② のグラフとの共有点のx座標の個数と捉えることで、①は固定された 3 次関数のグラフなので概形がかけ、②はx軸に平行な直線で、上下に動くだけなので、簡単に①との交点を掴むことができる。(右図参照)



y=k はx軸に平行な直線なので上下に動かして考える!

それでは、実際に例題をやってみよう!

問題

3次方程式 $2x^3+3x^2-12x-k=0$ が異なる3つの実数解をもつための, 定数kの値の範囲を求めよ。

解答

定数 dを移項した

 $2x^3 + 3x^2 - 12x - k = 0 \Leftrightarrow 2x^3 + 3x^2 - 12x = k$

 $2x^3 + 3x^2 - 12x = k$ の実数解は

$$\begin{cases} y = 2x^3 + 3x^2 - 12x & \cdots \\ y = k & \cdots \end{aligned}$$

の 2 つのグラフの共有点のx 座標といえる。

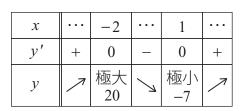
①のグラフは

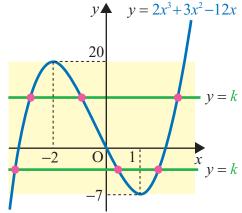
$$y' = 6x^2 + 6x - 12 = 6(x+2)(x-1)$$

x = 2のとき, y = 20, x = 1のとき, y = -7

増減表は右上図となる。

よって、グラフより求めるkの範囲は $-7 < k < 20 \cdots$ (答え)





y=k が上下に黄色の範囲を動くとき、 $y=2x^3+3x^2-12x$ と3つの共有点を持つ!

Wismallwamony@Mant 数学Ⅱ 三角方程式の解の個数問題 早見チャート②

🔲 三角方程式の解の個数問題とは?

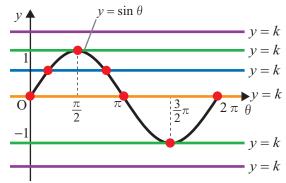
問題 実数 kに対して方程式 $\sin \theta - k = 0$ ($0 \le \theta \le 2\pi$)の解の個数を求めよ。

 $\sin \theta - k = 0$ を $\sin \theta = k$ と定数を分離して, $y = \sin \theta$ と y = k のグラフの共有点の個数を考えれば, 簡単に解の個数を求めることができる。

解答

 $\sin \theta - k = 0 \Leftrightarrow \sin \theta = k$ の実数解は、 $y = \sin \theta$ ……① $v = k \cdots 2$ の 2 つのグラフの共有点の x 座標といえる。 よって,右グラフより

- (ii) $k=\pm 1$ のとき, 解 θ の個数は1個(答え)
- (iii) -1 < k < 1かつ $k \neq 0$ のとき,解 θ の個数は2個
- (iv) k=0 のとき, 解 θ の個数は3個



実数kに対して方程式 $\sin^2\theta + \sin\theta - 1 = k$ ($0 \le \theta < 2\pi$)の解の個数を求めよ。

はどうだろう。

左辺の $v = \sin^2 \theta + \sin \theta - 1$ の三角関数のグラフは, 数学 \blacksquare で習う三角関数, 合成関数の微分などを 考える。※置き換えた場合は範囲をチェックすることを忘れない!

解答 $t = \sin \theta$ と置き換えた式 $t^2 + t - 1 = k$ の解の個数を考える。

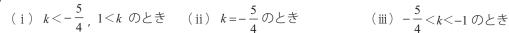
 θ の範囲は, $0 \le \theta < 2\pi$ なので, $-1 \le \sin \theta \le 1 \Rightarrow -1 \le t \le 1$ となる。

 $t^2+t-1=k$ の解の個数は、 $y=t^2+t-1$ ……①と y=k……②のグラフの共有点の個数となるので

 $y = t^2 + t - 1 = \left(t + \frac{1}{2}\right)^2 - \frac{5}{4}$ ①と②の共有点の個数は、下図グラフより

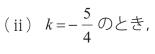
 $(i) k < -\frac{5}{4}, 1 < k o \geq 5,$

共有点は0個



(ii)
$$k=-\frac{5}{4}$$
のとき

(iii)
$$-\frac{5}{4} < k < -1$$
 のとき



共有点は1個

(iii)
$$-\frac{5}{4} < k < -1$$
 のとき,

共有点は2個

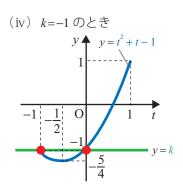
(iv) k=-1 のとき.

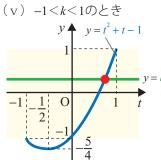
共有点は2個

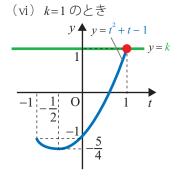
(v) -1 < k < 10 ≥ 5 .

共有点は1個

(vi) k=1 のとき.







共有点は1個 ※チャート③へ続く

※見やすくするため、 $y=t^2+t-1$ グラフは-1≦t≦1の範囲で描いた。

Wismall@mony@Mana 数学Ⅱ 三角方程式の解の個数問題 早見チャート③

しかし, この共有点は,

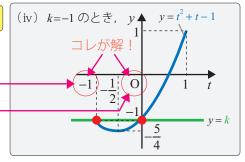
 $t = \sin \theta$ と置き換えたので

あくまでもt-t+1=kの実数解の個数であって,

問題で問われている θ の解の個数ではない。

例えば,

(iv) k=-1 のとき, 共有点は, t=-1, 0 となり,

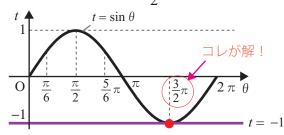


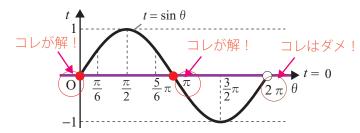
t=-1 ($\sin \theta=-1$)のとき,

求める解 θ は、 $\theta = \frac{3}{2}\pi$ の1個

t=0 ($\sin \theta=0$)のとき,

求める解 θ は, θ = 0, π の 2 個。





つまり, 1 つの t に対して, $t = \sin \theta$ を満たす θ は 1 つとは限らない! 🖘 💏

解法のImage

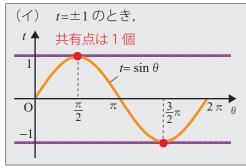
 $at^2 + bt + c = k$ の解を tı, t2とすると

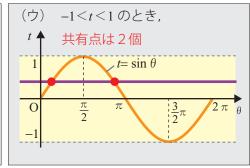
 $\sin \theta (\cos \theta) = t_1, t_2$ $\theta = \theta_1, \theta_2, \cdots$

解答の続き $0 \le \theta < 2\pi$ であるので、1つのtの値に対して、

- (7) t < -1, 1 < t のとき, 解 θ の個数は 0 個
- (1) $t=\pm 1$ のとき,解 θ の個数は1 個
- (ウ) -1 < t < 1 のとき, 解 θ の個数は2個 となる。(下図参照)







よって,

 $k < -\frac{5}{4}$, 1 < k のとき,解の個数は0個 \blacktriangleleft

 $k=-\frac{3}{4}$ のとき,解の個数は2個

 $t = -\frac{1}{2}$ より, -1 < t < 1 の間に 1 つの解を持ち, (ウ)より、1つの解につき、2つの解をもつので

 $-\frac{5}{4} < k < -1$ のとき,解の個数は4個

-1 < t < 0 の間に 2 つの解を持ち, (ウ) より, 1つの解につき, それぞれ 2つの解をもつので

……(答え)

k=-1 のとき,解の個数は3個 ◀

t=-1,0より, t=-1のとき, (イ)より, 1つの解をもち, t=0 のとき, (ウ)より, 1つの解につき, 2つの解をもつので

-1 < k < 1 のとき,解の個数は2個・

0 < t < 1 の間に1つの解を持ち、(ウ)より、1つの解につき、 2つの解をもつので

k=1のとき,解の個数は1個 ◀

t=1 より, (1) より, (1) の解をもつので

Wisinal Microssy Cliant 数学 II 三角方程式の解の個数問題 早見チャート④

企解法の手順

STEPI 与式から定数部分を分離する。 \Rightarrow 「三角関数の式」= k (定数)……① とする。

STEP2 「三角関数の式」のグラフを描く。しかし、ほとんどの問題で、数学 II の範囲内では描けない形となっている。そこで、置き換えを行うが、 $\sin\theta$ と $\cos\theta$ が混合している場合は、 $\sin\theta$ (または $\cos\theta$)に種類を統一する。

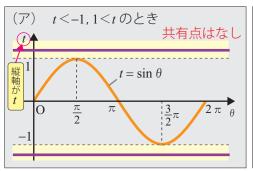
STEP3 $t = \sin \theta$ (または $t = \cos \theta$) と置き、(①は「tの式」=k(定数)…②と書き換えることができる。) θ の範囲からtの範囲を求める。(例えば、 $0 \le \theta < 2\pi$ のとき、 $-1 \le \sin \theta \le 1 \Rightarrow -1 \le t \le 1$)

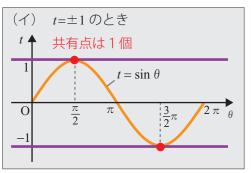
STEP4 1つのtの値に対して,解 θ の個数を求める。

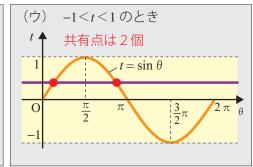
 $0 \le \theta < 2\pi$ のとき (ア) t < -1, 1 < t のとき, 解 θ の個数は0 個

(イ) $t=\pm 1$ のとき,解 θ の個数は1個

(ウ) -1 < t < 1 のとき, 解 θ の個数は2個 となる。(下図参照)







STEP5 STEP3で求めたtの範囲において,②の実数解の個数は, $y = \lceil t \text{ O}$ 式」……③ と y = k ……④ との共有点の個数に等しいので ③のグラフを描き,④のグラフを上下に動かして,共有点の個数を求める。

STEP6 STEP4 の解 θ の個数とSTEP5 の解 t の個数から『 \mathbf{R} θ の個数』を求める。

🕰 ミスを防ぐ視覚的解法の手順

『 2 次関数のグラフ』と『三角関数 $(\sin \theta)$ また $(t=\sin \theta)$ と置き換えた場合は $\cos \theta$ のグラフ』を縦に並べて描くことで、

解の個数が視覚的にわかる!

STEPI tの範囲内(例えば, $0 \le \theta < 2\pi$ とするとき, $-1 \le t \le 1$) で 2 次関数のグラフを描く。

STEP2 $t = \sin \theta \text{ (or } t = \cos \theta \text{) } グラフを 横に倒したグラフを描く。 その際, <math>t$ の範囲である両端 の値の縦のラインを合わせる。 (右図, $-1 \le t \le 1$ のとき, $-1 \ge 1$ の縦のライン)

STEP3 y=kのグラフを上下に動かして,2次関数との共有点を求める。(右図, ●を共有点とする)

STEP4 共有点●から真下に下ろし,三角関数のグラフとぶつかる点(右図,●を共有点とする)が求める解 θ の個数となる。

